- Xiaomi 13T és 13T Pro - nincs tétlenkedés
- Leica kamerákat kap a Xiaomi Mix Flip 2 is
- Samsung Galaxy A56 - megbízható középszerűség
- Yettel topik
- Megjelent a Poco F7, eurós ára is van már
- India felől közelít egy 7550 mAh-s Redmi
- Samsung Galaxy S24 Ultra - ha működik, ne változtass!
- Fotók, videók mobillal
- Xiaomi 14T - nem baj, hogy nem Pro
- Xiaomi 14T Pro - teljes a család?
Új hozzászólás Aktív témák
-
Lacc
aktív tag
3. Nem néztem végig a videót, csak a kommentjét, ahol a "TensorFlow For Poets" című google anyagot linkelte be a feltöltő, és azt néztem át gyorsan 2 perc alatt, szóval ezért ez a hivatkozási alapom.
És itt írja a következőket:
In this exercise, we will retrain a MobileNet. MobileNet is a a small efficient convolutional neural network. "Convolutional" just means that the same calculations are performed at each location in the image.
The MobileNet is configurable in two ways:
Input image resolution: 128,160,192, or 224px. Unsurprisingly, feeding in a higher resolution image takes more processing time, but results in better classification accuracy.
The relative size of the model as a fraction of the largest MobileNet: 1.0, 0.75, 0.50, or 0.25.
We will use 224 0.5 for this codelab.De 84 és 95-ös meg 76. képek, meg a 98-as is olyan a jobb oldali piros téglalapm talán még 57-esre is rá lehet mondasni.
-
Ez az egész egy már létező projektre "épült" rá teszt jelleggel, tehát a kis színes képek eddig is voltak, sőt osztályozás is, csak más feltételekkel. Amit most ki akartam próbálni, az annyi, hogy az ML mit hoz ki belőle. 1. Tehát nem C-ben van, hanem a sima TF for poets retrain.py-t használtam.
2. Igazából azért csináltam a szivárvány színezést, hogy fejlesztés közben lássam, hogy a mozgásbecslő algoritmus, jól működik-e. Aztán megtetszett, és benne hagytam. Meg fancy
3. Ehhez nem tudom hozzászólni, lehet butaságot írok, de nekem az Inception v3 rémlett.
4. Meglesem, kösz.+1 Jó észrevétel, de a 84-re gondoltál, nem?
-
Lacc
aktív tag
Pár észrevétel:
1. Érdemes inkább Python vagy C++-ot használni, a C Api még nem támogatja az összes Tensorflow API-t. Lasd link Current Status, bár kérdés mennyire használod ki.
2. Nem azért színezzük, mert Fancy. Hanem class annotáció miatt
, itt egy példa kép. Bár a te leírásodhoz talán nem kapcsolódik, nem tudom, hogy pontosan mit akartál színezés alatt érteni, de objektum detektálás miatt használják, a gépi intelligencia tanítatása supervised learning-gel (felügyelt tanulással, megmondjuk neki mi micsoda), erre van egy jó egyetemi projekt is.
3. Tutorialban a CNN architektúra ami használva van, az a MobilNet, másik architektúrával pontosabb eredményt is el lehet érni, bár ez függ a bemeneti képek "témájától" is. VGG, FCN, SegNet, AlexNet, ezek mind-mind más arhictektúrák, más performancia, pontosság, stb.
4. Lehet pontosabb eredményt kapsz, ha a Hyperparametéert változtatod (esetleg filter/kernel - ezt a fogalmat láttam, hogy ugyanarra használják) a Tutorialt amit csináltál, ott a 7. szakaszban leírja.+1 Megnéztem a Valid képeket, amelyeket Invalidnak jelölt, két dolgot figyeltem meg. 3 olyan képet jelölt meg invalidnak, ahol látott egy színből négyzet alakot/téglalapot, az egyik a 86-os volt. Az invalid képeknél látszik, hogy mindig van egyszínű négyszet. 2-nél meg azt vettem észre, hogy a viharszeme, ha szabad így mondanom, nagyon el van nyújtva.
+2 "AI/machine learning/bullsitbingó" - kihagytad a "Deep Learning"-et.
-
válasz
Realradical #1 üzenetére
Örülök, hogy valaki hasznát veszi ennek a kevésnek is
IO.sys: Az nehéz volna, mert semennyire sem értek hozzá, tényleg csak a tutorialt követtem.
-
IO.sys
őstag
Nincs kedved írni Tensorflow tutorialt? 15 éve programozok, érdekel ez is, de Youtube videókból nem igazán esett le, mi miért merre.
-
Realradical
őstag
Kösz a megosztást!
Én a sztenderd mennyit fog érni az ingatlanod típusú tutorialt nézegettem + Pluralsight, de sajna kevés volt ahhoz, hogy megalapozzam a tudásom a tökéletes tőzsde-géphez.
Ellopom a munkád és tanulok belőle.
Új hozzászólás Aktív témák
Hirdetés
- Asztali PC , i7 11700KF , RTX 3070 Ti , 32GB DDR4 , 512GB NVME , 2TB HDD
- Asztali PC , R5 5500 , RX 5700 XT , 16GB RAM , 256GB NVME , 1TB HDD
- ASUS TUF Gaming F15 gamer laptop
- X1 Yoga 8th 2-in-1 14" FHD+ IPS érintő i5-1335U 16GB 256GB NVMe ujjolv IR kam aktív toll gar
- Lenovo / SK Hynix 512GB M.2 NVME SSD 0 perces
- BESZÁMÍTÁS! MSI MAG321QR 32 165Hz WQHD 1ms monitor garanciával hibátlan működéssel - használt
- Nintendo Switch bazár (Okosított Nintendo Switch konzolok, játékok, tartozékok)
- Dixit 4 Eredet (bontatlan, fóliás kártyacsomag)
- Keresem : Lenovo Legion 5 16IRX9 83DG0037HV
- Azonnali készpénzes Sony Playstation 4 Slim / PS4 Pro felvásárlás személyesen/csomagküldéssel
Állásajánlatok
Cég: Promenade Publishing House Kft.
Város: Budapest
Cég: CAMERA-PRO Hungary Kft
Város: Budapest