- Okosóra és okoskiegészítő topik
- Samsung Galaxy S24 Ultra - ha működik, ne változtass!
- Honor Magic V5 - méret a kamera mögött
- Samsung Galaxy S23 Ultra - non plus ultra
- Samsung Galaxy S23 és S23+ - ami belül van, az számít igazán
- Ne felejtsd el a páncélt lemeríteni!
- Samsung Galaxy A52s 5G - jó S-tehetség
- Egy óra, két rendszer
- Megfizethető lett a Samsung új AI fülese
- Motorola G86 - majdnem Edge
Új hozzászólás Aktív témák
-
aAron_
őstag
válasz
Jester01
#4136
üzenetére
értem, akkor leírom pontosabban mit akarok kiszámolni, hátha van valami ötleted (meg kedved segíteni). sajnos most úgy érzem még nem elég a tudásom egy ilyen probléma megoldásához.

szóval az egész dolog lényege az, hogy X db részvény (ált 40<X<50) egy portfólióban való optimális eloszlását megtaláljuk. ez akkor a legjobb ha a sharpe ratio a lehető legnagyobb. ezt az alábbi módon kell kiszámolni:
sharpe_ratio=sqrt(250)*((avg_daily_rets - riskfree_daily_rets)/std_dev)
avg_daily_rets nem más mint a porfólió átlagos napi hozama pl.: 0.0002364 = 0.02364%
riskfree_rets az elérhető legnagyobb kockázatmentes napi hozam (lehet akár 10 éves lejáratú amerikai kötvény, vagy akár banki kamat, bár ez utóbbi kevésbé)
std_dev pedig standard deviation of the portfolio, tehát a szórása a napi hozamoknak (ez a kockázat a gyakorlatban)
(250 a kereskedési napok száma egy évben)
adatok amivel dolgozni kell kb így néznek ki (napi igazított árfolyam, mintha mindegyik 1-től indulna az 1. napon):
első, második, harmadik, negyedik, ..., n-edik részvény
1. 1.00000 1.00000 1.00000 1.00000 ... 1.00000
2. 0.99820 0.99930 1.00090 0.99130 ... 1.00010
3. 1.00150 0.99750 1.00140 1.00300 ... 1.00060
3. 1.00510 0.99970 1.00080 1.00380 ... 1.00070
5. 1.00830 1.00240 1.00160 1.00360 ... 1.00080
6. 1.00910 0.99050 1.00270 1.01440 ... 1.00100
7. 1.00900 0.98940 0.99970 1.01890 ... 1.00110
8. 1.00830 0.99060 0.99930 1.02240 ... 1.00170
.
.
.n-edik 1.29590 1.22330 1.13880 1.40270 ... 1.06800
napeddig úgy számoltam (X<=4 esetén), hogy leteszteltem az összes lehetőséget
egyik lehetőség pl.: első részvényt vettem 0.5x, másodikat 0.3x, harmadikat 0.1x, negyediket 0.1x és így kiszámoltam minden napra a porfólió értékét
ebben az esetben (ha az első 4 részvénnyel számolunk csak) a portfólió árfolyama a 2. nap= 0.5x0.99820+0.3x0.99930+0.1x1.00090+0.1x0.99130=0.99811
ha ez az érték megvan minden napra abból már ki tudom számolni minden egyes nap hozamát és tudok vele dolgozni
csak onnan tudom, hogy sokkal több részvény optimális allokációját is ki lehet számolni, hogy többen is több mint 500 részvénnyel dolgoztak (külföldi fórumon), és olyan algoritmust írtak amely egy évre visszamenőleges adatból kiszámolta az optimális allokációt és sharpe ratio-t, mégpedig sokkal nagyobb pontossággal mint 0.01, elmondásuk szerint egy viszonylag lassú gépen kevesebb mint 20 perc alatt lefutott az egész.
remélem érthető és nem magyaráztam túl semmit sem

Új hozzászólás Aktív témák
● olvasd el a téma összefoglalót!
● ha kódot szúrsz be, használd a PROGRAMKÓD formázási funkciót!
- HIBÁTLAN iPhone 13 mini 128GB Pink -1 ÉV GARANCIA - Kártyafüggetlen, MS3050, 96% Akkumulátor
- MacBook Pro 16 2021 M1 Max 32GB 512GB 1 év garancia
- BESZÁMÍTÁS! Asus B550M R9 5900X 32GB DDR4 1TB SSD RTX 4070 SUPER 12GB Be Quiet! Silent Base 601 850W
- Csere-Beszámítás! Garancia! Steam Deck LCD 512GB + 256GB Ajándék Micro SD Kártya!
- Telefon felvásárlás!! Huawei P20 Lite/Huawei P20/Huawei P30 Lite/Huawei P30/Huawei P30 Pro
Állásajánlatok
Cég: FOTC
Város: Budapest




